Decompositions of Weakly Compact Valued Integrable Multifunctions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semicontinuity of Convex-valued Multifunctions

We introduce semicontinuity concepts for functions f with values in the space C(Y ) of closed convex subsets of a finite dimensional normed vector space Y by appropriate notions of upper and lower limits. We characterize the upper semicontinuity of f : X → C(Y ) by the upper semicontinuity of the scalarizations σf( · )(y∗) : X → R by the support function. Furthermore, we compare our semicontinu...

متن کامل

Selection Theorems for G 5 - Valued Multifunctions

In this paper we establish under suitable conditions the existence of measurable selectors for Gs-valued multifunctions. In particular we prove that a measurable partition of a Polish space into G6 sets admits a Borel selector.

متن کامل

Some properties of b-weakly compact operators on Banach lattices

In this paper we give some necessary and sufficient conditions for which each Banach lattice  is    space and we study some properties of b-weakly compact operators from a Banach lattice  into a Banach space . We show that every weakly compact operator from a Banach lattice  into a Banach space  is b-weakly compact and give a counterexample which shows that the inverse is not true but we prove ...

متن کامل

On upper and lower almost weakly continuous fuzzy multifunctions

The aim of this paper is to introduce the concepts of fuzzy upper and fuzzy lower almost continuous, weakly continuous and almost weakly continuous multifunctions. Several characterizations and properties of these multifunctions along with their mutual relationships are established in $L$-fuzzy topological spaces

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2020

ISSN: 2227-7390

DOI: 10.3390/math8060863